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Abstract. We develop an existence theory for hemivariational inequalities in vector-valued
function spaces which involve pseudomonotone operators. The obtained abstract result is
used to study quasilinear elliptic systems whose lower order coupling vector field depends
discontinuously upon the solution vector. We provide conditions that allow the identification
of regions of existence of solutions for such systems, so called trapping regions.
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1. Introduction

Let V ⊂W 1,r (�;R
N), r > 1, be a reflexive Banach space compactly imbed-

ded into LP (�;R
N),p > 1. Suppose that f(k) :�× R

N → R, k = 1, . . . ,N ,
are Baire-measurable functions, and for any k ∈ {1, . . . ,N}, for a.e. x ∈
� and for all (ξ1, . . . , ξk−1, ξk+1, . . . , ξN) ∈ R

N−1, the functions R � ξk �→
f(k)(x, ξ1, . . . , ξk, . . . , ξN ) are locally Lipschitz. Let

f 0
(k)(x, ξ ;ηk)= lim sup

h→0
λ→0+

{
fk(x, ξ1, . . . , ξk +h+ληk, . . . , ξN)

−fk(x, ξ1, . . . , ξk +h, . . . , ξN)
}
/λ

denote the partial generalized directional derivative of f(k) at ξ in the direc-
tion ηk, and define for each ξ ∈R

N and a.e. x ∈� Clarke’s partial general-
ized gradient given by

∂kf(k)(x, ξ)={χ ∈R:f 0
(k)(x, ξ ;ηk)�χηk ∀ηk ∈R}, k∈{1, . . . ,N}.

Suppose that A:V →V � is a bounded, pseudomonotone operator and let
g∈V �.
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Our aim is to study the following existence problem:
Problem (P). Find u = (u1, . . . , uN) ∈ V satisfying the hemivariational
inequality:

〈Au−g, v−u〉V +
∫

�

N∑
k=1

f 0
(k)(x, u(x);vk(x)−uk(x)) dx�0,

∀v= (v1, . . . , vN)∈V.

Hemivariational inequalities introduced by P.D. Panagiotopoulos have
attracted increasing attention over the last decade mainly due to its many
applications in mechanics and engineering, cf. e.g. [23, 25]. This new type
of variational inequalities arise, e.g., in mechanical problems when noncon-
vex, nonsmooth energy functionals (so-called superpotentials) occur, which
result from nonmonotone, multivalued constitutive laws, such as for exam-
ple unilateral contact and friction problems, cf. e.g. [23–25]. The theory
of hemivariational inequalities extends the standard theory of variational
inequalities by replacing the subdifferential of convex functionals with the
directional differentiation in the sense of Clarke of nonconvex functions.

The use of topological methods for the study of hemivariational inequal-
ities and their applications has been shown in [13–18, 20, 23–25], and the
references quoted there.

Coercive and semicoercive hemivariational inequalities in vector-valued
function spaces have been considered in [21, 22] under the unilateral
growth condition [18].

The main goal of this paper is to develop an existence theory of
quasihemivariational inequalities (cf. [23]) in vector-valued function spaces
involving pseudomonotone operators, i.e., for problem (P). The obtained
abstract results will then be used to study quasilinear elliptic systems
whose lower order coupling vector field may depend discontinuously upon
the solution vector. We provide conditions that allow the identification
of regions of existence of solutions for such systems, so called trapping
regions.

2. Hypotheses and Premilinary Results

Throughout this paper we shall assume the following hypotheses:

(H1) A : V → V � is a bounded, pseudomonotone operator, i.e. A maps
bounded sets into bounded sets and that the following conditions
are satisfied [2, 3]:

(i) The effective domain of A coincides with the whole V , i.e.
Dom(A)=V ;
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(ii) For any {un}⊂V , if un→u weakly in V and lim sup
n→∞

〈Aun,un−
u〉V �0 then lim inf

n→∞ 〈Aun,un−v〉V � 〈Au,u−v〉V for any v∈V .

(H2) There exist positive constants a, b>0 and 1�σ <p such that

〈Au,u〉V �a‖u‖pV −b‖u‖σV , ∀u∈V.
(H3) For any k∈{1, . . . ,N},

(i) R
N ×R� (ξ, ηk) �→f 0

(k)(x, ξ ;ηk) is upper semicontinuous for a.e.
x ∈�;

(ii) �×R
N ×R� (x, ξ, ηk) �→f 0

(k)(x, ξ ;ηk) is Baire-measurable;

(H4) For any R � 0 there exists KR > 0 such that the condition
|f 0
(k)(x, ξ ;ηk)| � KR|ηk|, ∀ξ ∈ R

N with |ξ | � R,∀ηk ∈ R and for
a.e. x ∈�, is valid for k∈{1, . . . ,N}.

(H5) For any k ∈ {1, . . . ,N} there exists a nonnegative constant αk � 0
with the property that

f 0
(k)(x, ξ ;−ξk)�αk(1+|ξ |q), ∀ξ ∈R

N,

for some q <p.

LEMMA 1. Let (H4) and (H5) be satisfied. Then there exists a nondecreas-
ing function α: R+ →R+ with the property that

N∑
k=1

f 0
(k)(x, ξ ;ηk − ξk)�α(r)(1+|ξ |q), ∀ξ ∈R

N, η∈R, |η|� r, r�0

for a.e. x ∈�. (1)

Proof. Recall that R�µ �→f 0
(k)(x, ξ ;µ) is positively homogeneous [10]. It

is sufficient to argue for ηk �=0. For 0< |ηk|� |ξk| the hypothesis (H5) yields

N∑
k=1

f 0
(k)(x, ξ ;ηk − ξk)=

N∑
k=1

f 0
(k)

(
x, ξ ;−ξk

(
1− ηk

ξk

))

=
N∑
k=1

(
1− ηk

ξk

)
f 0
(k)(x, ξ ;−ξk)

�
N∑
k=1

αk

(
1− ηk

ξk

)
(1+|ξ |q)

�2
N∑
k=1

αk(1+|ξ |q),
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while for |ξk|< |ηk|� r, r >0, by (H4) and (H5) it follows

N∑
k=1

f 0
(k)(x, ξ ;ηk − ξk)�

N∑
k=1

|ηk|f 0
(k)

(
x, ξ ; ηk|ηk|

)
+

N∑
k=1

f 0
(k)(x, ξ ;−ξk)

�
(
NrKr +

N∑
k=1

αk

)
(1+|ξ |q).

The foregoing estimates imply that if we set α(r) :=NrKr +2
∑N

k=1 αk then
(1) is fulfilled.

3. Finite Dimensional Approximation

Let 
 be a class of all finite dimensional subspaces of V ∩L∞(�;R
N). For

any F ∈
 consider the following problem.
Problem (PF ). Find uF = (uF1, . . . , uFN) ∈ F and χF = (χF1, . . . , χFN) ∈
L1(�;R

N) such that

〈AuF −g, v−uF 〉V +
∫

�

χF · (v−uF ) d�=0, ∀v= (v1, . . . , vN)∈F,
(2)

∫

�

χF · (v−uF ) d��
∫

�

N∑
k=1

f 0
(k)(uF ;vk −uFk) d�, ∀v∈L∞(�;R

N).

(3)

PROPOSITION 2. Under the hypotheses (H1)–(H5) for any F ∈
 the prob-
lem (PF ) has at least one solution. Moreover, a constant M>0 independent
of F can be found such that

‖uF‖V �M, ∀F ∈
. (4)

Proof. For F ∈
 define �F :F →2L
1(�;RN) as

�F (v) :=
{
χ ∈L1(�;R

N) :
∫

�

χ ·wdx�
∫

�

N∑
k=1

f 0
(k)(v;wk) d�,

∀w∈L∞(�;R
N)

}
. (5)
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Notice that �F (·) has nonempty, convex and closed values, and if ψ ∈�F (v)
and v∈F then

‖ψ‖L1(�;RN)�K‖v‖L∞(�;RN )
.

Moreover, from the upper semicontinuity of
∑N

k=1 f
0
(k)(x, ·; ·) and Fatou’s

lemma it follows that �F is upper semicontinuous from F into L1(�,RN)

endowed with the weak topology.
Further, let τF :L1(�;R

N)→ F� assigns to any ψ ∈L1(�) the element
τFψ ∈F� defined by

〈τFψ, v〉F :=
∫

�

ψ ·v dx, ∀v∈F. (6)

Let us note that τF is a linear continuous operator from the weak topol-
ogy of L1(�;R

N) to the (unique) linear topology on F�. Therefore, GF :
F →2F

�

given by

GF(v) := τF�F (v), ∀v∈F, (7)

is upper semicontinuous.
Since F is finite dimensional, by (H1) it follows that AF := i∗FAiF is con-

tinuous from F into F ∗. Thus, if we set gF := i∗Fg then AF +GF − gF :
F →2F

�

is an upper semicontinuous multivalued mapping with nonempty,
bounded, closed and convex values. In addition, by (6), (7) and (H2), for
any vF ∈F and ψF ∈GF(vF ) one obtains the estimate

〈AFvF +ψF −gF , vF 〉F� 〈AvF −g, vF 〉V −
∫

�

N∑
k=1

f 0
(k)(vF ;−vFk) d�

�a‖vF‖pV −b‖vF‖σV −‖g‖V �‖vF‖V

−
N∑
k=1

αk

∫

�

(1+|vF |q) dx

�a‖vF‖pV −b‖vF‖σV −‖g‖V �‖vF‖V
−k|�|−k‖vF‖qV . (8)

Since q, σ <p, from (8) there exists a number M>0 not depending on F ∈

 such that the condition ‖vF‖V =M implies

〈AFvF +ψF −gF , vF 〉F �0. (9)

Accordingly, inequality (9) enables us to invoke ([1], Corollary 3, p. 337)
to deduce the existence of uF ∈F with property (4) such that 0 ∈AFuF +
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GF(uF )−gF . This ensures that for some χF ∈�F (uF ) one has that AFuF +
τFχF − gF = 0, so (uF ,χF ) is a solution of (PF ). This completes the
proof.

PROPOSITION 3. Assume that (uF ,χF ) ∈ F ×L1(�;R
N) is a solution of

(PF ). Then the set {χF }F∈
 is weakly precompact in L1(�;R
N).

Proof. Since � is bounded, according to the Dunford–Pettis theorem (see,
e.g., [12], p. 239) it suffices to show that for each ε>0 a number δ>0 can
be determined such that for any ω⊂� with |ω|<δ,

∫

ω

|χF |dx <ε, ∀F ∈
. (10)

From Lemma 1 it follows that there exists a function α:R+ →R+ such that

N∑
k=1

f 0
(k)(x, ξ ;ηk − ξk)�α(r)(1+|ξ |q), ∀ξ, η∈R

N, |η|� r,

r�0,a.e. in �. (11)

Fix r >0 and let η∈R
N be such that |η|� r. Then, by (2) and (3), χF · (η−

uF )�
∑N

k=1 f
0
(k)(uF ;ηk −uFk), from which we get

χF ·η�χF ·uF +α(r)(1+|uF |q) for a.e. x ∈�. (12)

Let us set η ≡ r√
N
(sgnχF1(x), . . . , sgnχFN(x)) where sgny = 1 if y > 0,

sgny=0 if y=0, sgny=−1 if y<0. One obtains that |η|� r and χF (x) ·η�
r√
N

|χF (x)| for almost all x ∈�. Therefore from (12) it results

r√
N

|χF |�χF ·uF +α(r)(1+|uF |q).

Integrating this inequality over ω⊂� yields

∫

ω

|χF |d��
√
N

r

∫

ω

χF ·uF d�+
√
N

r
α(r)|ω|

+
√
N

r
α(r)|ω| p−q

p ‖uF‖q
Lp(�;RN)

. (13)

Consequently, from (4) and (13) it follows that

∫

ω

|χF |d��
√
N

r

∫

ω

χF ·uF d�+
√
N

r
α(r)|ω|+

√
N

r
α(r)|ω| p−q

p γ qMq,

(14)
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where γ >0 is a constant satisfying ‖ · ‖LP (�;RN)�γ ‖ · ‖V .
We claim
∫

ω

χF ·uF d��C (15)

for some positive constant C not depending on ω⊂� and F ∈
. Indeed,
from (11) we derive that

χF ·uF +α(0)(|uF |q +1)�0 for a.e. in �.

Thus it follows
∫

ω

χF ·uF d��
∫

ω

(χF ·uF +α(0)(|uF |q +1)) d�

�
∫

�

(χF ·uF +α(0)(|uF |q +1)) d�

�
∫

�

χF ·uF d�+k1(‖uF‖qV +|�|),

where k1>0 is a constant. By (4) and (2) (with v=0) it turns out that

∫

�

χF ·uF d�=−〈AuF −g,uF 〉�C,

The estimates above imply (15).
Further, (14) and (15) entail

∫

ω

|χF |dx�
√
N

r
C+

√
N

r
α(r)|ω|+

√
N

r
α(r)|ω| p−q

p γ qMq, ∀r >0. (16)

Corresponding to ε>0, fix r >0 with

√
N

r
C<

ε

2
(17)

and then take δ>0 small enough to have

√
N

r
α(r)|ω|+

√
N

r
α(r)|ω| p−q

p γ qMq <
ε

2
(18)

provided that |ω|<δ. Using this together with (16) and (17) it follows that
(10) is justified whenever |ω|<δ. This completes the proof.
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4. Existence of Solutions

In this section we prove our main existence result which reads as follows

THEOREM 4. Suppose that (H1)–(H5) hold. Then there exists (u,χ)∈V ×
L1(�;R

N) such that the quasi-hemivariational inequality

〈Au−g, v−u〉V +
∫

�

N∑
k=1

f 0
(k)(u;vk −uk) d��0, ∀v∈V, (19)

is satisfied. Moreover,

〈Au−g, v−u〉V +
∫

�

χ · (v−u)d�=0, ∀v∈V ∩L∞(�;R
N), (20)

χk ∈ ∂kf(k)(u) a.e. in �, χkuk ∈L1(�), ∀k∈{1, . . . ,N}. (21)

Proof. The proof is divided into a sequence of steps.

Step 1. For every F ∈
 we introduce

UF ={uF ∈F : for some χF ∈L1(�;R
N), (uF ,χF ) is a solution of (PF )}

and

WF =
⋃
F ′∈

F ′⊃F

UF ′ .

By Proposition 2, WF is nonempty (even UF is nonempty) and contained
in the ball BM ={v ∈V : ‖v‖V �M}. We denote by weakcl(WF ) the closure
of WF in the weak topology of V . The weak compactness of weakcl(WF )
follows from WF ⊂ BM ⊂ V and the reflexivity of V . The family {weak-
cl(WF )}F∈
 has the finite intersection property. Indeed, if F1, . . . , Fk ∈
,
then one has that WF1 ∩· · ·∩WFk ⊃WF , with F =F1 +· · ·+Fk. Thus by the
classical argument we conclude that there exists an element u∈V with

u∈
⋂
F∈


weakcl(WF ).

Let us choose F ∈
 arbitrarily. Since V is reflexive, one can extract an
increasing sequence of subspaces {F (n)}, each containing F , and for each n
an element u(n) ∈UF(n) such that u(n)→u weakly in V as n→∞ (Proposi-
tion 11, p. 274 [3]). Let us denote by {χ(n)}⊂L1(�;R

N) the corresponding
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sequence with the property that for each n a pair (u(n), χ(n)) is a solution
of (PF(n)), i.e.

〈Au(n)−g, v−u(n)〉V +
∫

�

χ(n) · (v−u(n)) d�=0, ∀v∈F (n), (22)

∫

�

χ(n) · (v−u(n)) d��
∫

�

N∑
k=1

f 0
(k)(u

(n);vk −u(n)k ) d�, ∀v∈L∞(�;R
N).

(23)

From Proposition 3 it follows that without loss of generality we can sup-
pose that χ(n) → χ(F) weakly in L1(�;R

N) for some χ(F) ∈ L1(�;R
N).

Finally we have asserted that

u(n)→u weakly in V (24)

χ(n)→χ(F) weakly in L1(�;R
N). (25)

Step 2. Now we prove that χ(F)= (χ(F)k ) in (25) has the property that

χ
(F)
k ∈ ∂kf(k)(u) a.e. in �, k=1, . . . ,N, (26)

which can be written equivalently as χ(F)∈�(u), where

�(u) :=
{
χ ∈L1(�;R

N) :
∫

�

χ ·v dx

�
∫

�

N∑
k=1

f 0
(k)(u;vk) d�, ∀v∈L∞(�;R

N)

}
. (27)

Since V is compactly imbedded into LP (�;R
N), due to (24) one may sup-

pose that

u(n)→u strongly in Lp(�;R
N). (28)

This implies that for a subsequence of {u(n)} (again denoted by the same
symbol) one gets u(n)→u a.e. in �. Thus Egoroff’s theorem can be applied
from which it follows that for any ε>0 a subset ω⊂� with mes ω<ε can
be determined such that u(n)→u uniformly in �\ω with u∈L∞(�\ω;R

N).
Let v∈L∞(�\ω;R

N) be an arbitrary function. From the estimate

∫

�\ω
χ(n) ·v d� �

∫

�\ω

N∑
k=1

f 0
(k)(u

(n);vk) d�
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combined with the weak convergence in L1(�;R
N) of χ(n) to χ(F), (28)

and with the upper semicontinuity of

L∞(�\ω;R
N)�u(n) �−→

∫

�\ω

N∑
k=1

f 0
(k)(u

(n);vk)d�

it follows

∫

�\ω
χ(F) ·v d��

∫

�\ω

N∑
k=1

f 0
(k)(u;vk) d�, ∀v∈L∞(�\ω;R

N).

But the last inequality amounts to saying that χ
(F)
k ∈ ∂kf(k)(u) a.e. in

�\ω, k∈{1, . . . ,N}. Since |ω|<ε and ε was chosen arbitrarily,

χ
(F)
k ∈ ∂kf(k)(u) a.e. in �, k∈{1, . . . ,N}. (29)

as claimed.

Step 3. Now, it will be shown that

lim sup
n→∞

∫

�

N∑
k=1

f 0
(k)(u

(n);vk −u(n)k ) d� �
∫

�

N∑
k=1

f 0
(k)(u;vk −uk) d� (30)

holds for any v ∈V ∩L∞(�;R
N). It can be supposed that u(n)→u a.e. in

�, since u(n) → u in Lp(�;R
N). Fix v ∈L∞(�;R

N) arbitrarily. In view of
χ
(n)
k ∈ ∂kf(k)(u(n)), k∈{1, . . . ,N}, Lemma 1 implies

N∑
k=1

f 0
(k)(u

(n);vk −u(u)k )�α(‖v‖L∞(�;RN))(1+|u(n)|q). (31)

From Egoroff’s theorem it follows that for any ε > 0 a subset ω⊂� with
mes ω < ε can be determined such that u(n) → u uniformly in �\ω. One
can also suppose that ω is small enough to fulfill

∫
ω
α(‖v‖L∞(�;RN))(1 +

|u(n)|q) d� � ε, n=1,2, . . . , and
∫
ω
α(‖v‖L∞(�;RN))(1+|u|q) d� � ε. Hence

∫

�

N∑
k=1

f 0
(k)(u

(n);vk −u(n)k ) d��
∫

�\ω

N∑
k=1

f 0
(k)(u

(n);vk −u(n)k ) d�+ ε
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which by Fatou’s lemma and upper semicontinuity of f 0
(k)(·; ·) yields

lim sup
n→∞

∫

�

N∑
k=1

f 0
(k)(u

(n);vk −u(n)k ) d��
∫

�\ω

N∑
k=1

f 0
(k)(u;vk −uk) d�+ ε

�
∫

�

N∑
k=1

f 0
(k)(u;vk −uk) d�+2ε.

By arbitrariness of ε>0 one obtains (30), as required.

Step 4. Now we show that

χ
(F)
k uk ∈L1(�), k∈{1, . . . ,N} (32)

lim inf
n→∞

∫

�

χ
(n)
k u

(n)
k d��

∫

�

χ
(F)
k ukd�, k∈{1, . . . ,N}. (33)

There exists a sequence {ε(m)}∞m=1 ⊂ L∞(�) with 0 � ε(m)(x) � 1 for a.e.
x ∈�, such that (Lemma 2.4, p. 122, [19]):

û(m) := (1− ε(m))u∈V ∩L∞(�;R
N), m=1,2, . . . ,

û(m)→u strongly in V as m→∞. (34)

Without loss of generality it can be assumed that û(m)→u a.e. in �. Since
χ
(F)
k ∈ ∂kf(k)(u), one can apply (H5) to obtain −χ(F)k uk � f 0

(k)(u;−uk) �
αk(1+|u|q). Hence

χ
(F)
k û

(m)
k = (1− ε(m))χ(F)k uk �−αk(1+|u|q). (35)

This implies that the sequence {χ(F)k û
(m)
k } is bounded from below by inte-

grable function and χ
(F)
k û

(m)
k →χ

(F)
k uk a.e. in � as m→ ∞. On the other

hand, one gets

∫

�

χ
(n)
k (̂u

(m)
k −u(n)k )d��

∫

�

f 0
(k)(u

(n); û(m)k −u(n)k )d�.

Thus
∫

�

χ
(F)
k û

(m)
k d�− lim inf

n→∞

∫

�

χ
(n)
k u

(n)
k d�

� lim sup
n→∞

∫

�

f 0
(k)(u

(n); û(m)k −u(n)k ) d�,
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and due to (30) we are led to the estimate
∫

�

χ
(F)
k û

(m)
k d�� lim inf

n→∞

∫

�

χ
(n)
k u

(n)
k d�+

∫

�

f 0
(k)(u; û(m)k −uk) d�

= lim inf
n→∞

∫

�

χ
(n)
k u

(n)
k d�+

∫

�

f 0
(k)(u;−ε(m)uk) d�

� lim inf
n→∞

∫

�

χ
(n)
k u

(n)
k d�

+αk(0)
∫

�

ε(m)(1+|u|q) d��C, C= const.

Thus by Fatou’s lemma we are allowed to conclude that χ(F)k uk ∈L1(�), k∈
{1, . . . ,N}, i.e. (32) holds. Taking into account that ε(m) → 0 a.e. in �

as m→ ∞ (passing to a subsequence if necessary) we establish (33), as
required.

Step 5. It will be shown that
⎧⎪⎨
⎪⎩
(Q(F))〈Au−g, v−u〉V +

∫

�

χ(F) · (v−u)d�=0, ∀v∈
∞⋃
n=1

F (n)⊃F ;

χ(F)∈�(u).
Since A is bounded and {uF }F∈
 ⊂ {v ∈ V : ‖v‖V �M}, there exists K > 0
such that {AuF }F∈
⊂{l∈V � :‖l‖V � �K}. Therefore (22) and (26) imply that

∣∣∣∣
∫

�

χ(F) ·v d�
∣∣∣∣�K‖v‖V , ∀v∈

∞⋃
n=1

F (n), χ(F)∈�(u) (36)

(recall that {F (n)} is an increasing sequence containing F ). Further, by
making use of (32) and (33) we have χ(F) ·u∈L1(�) and

lim sup
n→∞

〈Au(n), u(n)−v〉V �
∫

�

χ(F) · (v−u)d�

+〈g,u−v〉V , ∀v∈
∞⋃
n=1

F (n). (37)

Since u(n) ∈ F (n) and u(n) → u weakly in V , the closure of
⋃∞
n=1 F

(n) in
the strong topology of V ,

⋃∞
n=1 F

(n), must contain u. Thus there exists a
sequence {wi} ⊂⋃∞

n=1 F
(n) converging strongly to u in V as i → ∞. We

claim that for such a sequence,
∫

�

χ(F) ·wi d�→
∫

�

χ(F) ·ud� as i→∞. (38)
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Indeed, let {̂u(m)}∞m=1 be given by (34). From (35) it follows

−
N∑
k=1

αk(1+|u|q)�χ(F) · û(m)�
N∑
k=1

∣∣∣χ(F)k uk

∣∣∣ , m=1,2, . . . , (39)

with the bounds −∑N
k=1 αk(1 +|u|q) and

∑N
k=1

∣∣∣χ(F)k uk

∣∣∣ being integrable in
�. Thus there exists a constant C>0 such that

∣∣∣∣
∫

�

χ(F) · û(m)d�
∣∣∣∣�C‖û(m)‖V , m=1,2, . . . . (40)

Denote by A a linear subspace spaned by {̂u(m)}∞m=1 and define a linear
functional l̂χ (F ) :

⋃∞
n=1 F

(n)+A→R by the formula

l̂χ (F ) (v) :=
∫

�

χ(F) ·v d�, v∈
∞⋃
n=1

F (n)+A.

Taking into account (36) and (40), from the Hahn–Banach theorem it fol-
lows that l̂χ (F ) admits its linear continuous extension onto V, lχ(F) ∈V �. By
the dominated convergence,

∫

�

χ(F) · û(m)d� →
∫

�

χ(F) ·ud�, as m→∞,

so we get lχ(F)(u) = ∫
�
χ(F) · ud� which, in particular, implies (38), as

claimed.
Hence by making use of (37) we easily obtain

lim sup
n→∞

〈Au(n), u(n)−u〉V �0, (41)

which in view of the pseudomonotonicity of A yields

Au(n)→Au weakly in V ∗ (42)

〈Au(n), u(n)〉V →〈Au,u〉V .

By (22) this concludes

〈Au−g, v〉V +
∫

�

χ(F) ·v d�=0, ∀v∈
∞⋃
n=1

F (n). (43)

Due to (38) we easily arrive at (Q(F)), as desired.
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Step 6. It remains to show that there exists χ ∈ �(u) with the associated
linear functional defined by

l̂χ (v) :=
∫

�

χ ·vd�, ∀v∈V ∩L∞(�;R
N),

admitting a continuous extension lχ ∈V � which fulfills the conditions:

Au−g+ lχ =0, 〈lχ , u〉V =
∫

�

χ ·ud�. (44)

For every F ∈
 let us introduce

V (F)={χ(F)∈L1(�;R
N) : (Q(F)) holds}

and

Z(F)=
⋃
F ′∈

F ′⊃F

V (F
′).

As in the proof of Proposition 3 we show that the family {χ(F)}F∈
 is
weakly precompact in L1(�;R

N). Denoting by weakcl (Z(F)) the closure
of Z(F) in the weak topology of L1(�;R

N) we prove analogously that the
family {weakcl (Z(F))}F∈
 has the finite intersection property. Thus there
exists an element χ ∈�(u) such that for any F ∈
 it holds

〈Au−g, v〉V +
∫

�

χ ·vd�=0, ∀v∈F,

which leads immediately to (44), as desired.

Step 7. Now it will be shown that (19) holds for any v ∈ V . If v ∈ V ∩
L∞(�;R

N) then the assertion follows immediately from (20). Choose any
v∈V with

∑N
k=1 f

0
(k)(u;vk −uk)∈L1(�). There exists a sequence v̂(m)= (1−

ε(m))v such that {̂v(m)} ⊂ V ∩L∞(�;R
N), v̂(m) → v strongly in V (cf. [19]).

Since as already has been established,

〈Au−g, v̂(m)−u〉V +
∫

�

N∑
k=1

f 0
(k)(u; v̂(m)k −uk) d��0,

so in order to show (19) it remains to deduce that

lim sup
m→∞

∫

�

N∑
k=1

f 0
(k)(u; v̂(m)k −uk)d��

∫

�

N∑
k=1

f 0
(k)(u;vk −uk)d�.
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For this purpose let us observe that v̂(m) − u= (1 − ε(m))(v− u)+ ε(m)(−u)
which combined with the convexity of

∑N
k=1 f

0
(k)(u; ·) yields the estimate

N∑
k=1

f 0
(k)(u; v̂(m)k −uk)� (1− ε(m))

N∑
k=1

f 0
(k)(u;vk −uk)+ ε(m)

N∑
k=1

f 0
(k)(u;−uk)

�
∣∣∣∣∣
N∑
k=1

f 0
(k)(u;v−u)

∣∣∣∣∣+α(0)(1+|u|q).

Thus Fatou’s lemma implies the assertion.

Finally, it remains to consider the case in which
∑N

k=1 f
0
(k)(u;vk − uk) /∈

L1(�). Recall that if
∑N

k=1 f
0
(k)(u;vk − uk) /∈ L1(�) then according to the

convention that +∞−∞=+∞ we have

∫

�

N∑
k=1

f 0
(k)(u;vk −uk) d�

=

⎧⎪⎨
⎪⎩

+∞ if
∫
�

[
∑N

k=1 f
0
(k)(u;vk −uk)]+d�=+∞

−∞ if
∫
�

[
∑N

k=1 f
0
(k)(u;vk −uk)]+d�<+∞ and∫

�
[
∑N

k=1 f
0
(k)(u;vk −uk)]−d�=+∞,

where r+ :=max{r,0} and r− :=max{−r,0} for any r ∈R.
If
∫
�

∑N
k=1 f

0
(k)(u;vk − uk)d� = +∞ then there is nothing to prove. If∫

�

∑N
k=1 f

0
(k)(u;vk − uk)d� = −∞ then we are led to the contradiction.

Indeed, there exists a sequence v̂(m) = (1 − ε(m))v such that {̂v(m)} ⊂ V ∩
L∞(�;R

N), v̂(m)→v strongly in V . Since, as already has been established,

〈Au−g, v̂(m)−u〉V +
∫

�

N∑
k=1

f 0
(k)(u; v̂(m)k −uk) d��0,

we get

∫

�

N∑
k=1

f 0
(k)(u; v̂(m)k −uk)d�� 〈Au−g,−v̂(m)+u〉V �−C, C= const,

and consequently

∫

�

[
N∑
k=1

f 0
(k)(u; v̂(m)k −uk)

]+

d��
∫

�

[
N∑
k=1

f 0
(k)(u; v̂(m)k −uk)

]−

d�−C.

(45)
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By the hypothesis,
∫
�

[
∑N

k=1 f
0
(k)(u;vk −uk)]−d�=+∞ and

∫
�

[
∑N

k=1 f
0
(k)x

(u;vk −uk)]+d�<+∞. Since

N∑
k=1

f 0
(k)(u; v̂(m)k −uk)� (1− ε(m))

N∑
k=1

f 0
(k)(u;vk −uk)+ ε(m)

N∑
k=1

f 0
(k)(u;−uk)

� (1− ε(m))
N∑
k=1

f 0
(k)(u;vk −uk)+α(0)(1+|u|q),

so we obtain

∫

�

[
N∑
k=1

f 0
(k)(u;vk −uk)

]+

d��
∫

�

[
N∑
k=1

f 0
(k)(u;vk −uk)

]+

d�

+
∫

�

α(0)(1+|u|q)d��D,

where D= const>0, which combined with (45) yields

∫

�

[
N∑
k=1

f 0
(k)(u; v̂(m)k −uk)

]−

d��C+D.

Thus the application of Fatou’s lemma concludes

∫

�

[
N∑
k=1

f 0
(k)(u;vk −uk)

]−

d��C+D.

contrary to the assumption that
∫
�

∑N
k=1 f

0
(k)(u;vk − uk) d� = −∞. This

contradiction completes the proof of Theorem 4.

5. Discontinuous Elliptic Systems and Trapping Regions

Let �⊂ R
N be a bounded domain with Lipschitz boundary ∂�, and let

V =W 1,p(�) and V0 =W 1,p
0 (�), 1<p<∞, denote the usual Sobolev spaces

with their dual spaces V ∗ and V ∗
0 , respectively. The theory developed in

the preceding sections will be used to establish existence and comparison
results of the following discontinuous elliptic system: Let k∈{1, . . . ,N} and
u= (u1, . . . , uN)

Akuk + ∂kf(k)(u)�hk in �, uk =0 on ∂�, (46)
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where Ak is a second order quasilinear differential operator in divergence
form of Leray–Lions type given by

Akv(x)=−
N∑
i=1

∂

∂xi
a
(k)
i (x,∇v(x)), with ∇v=

(
∂v

∂x1
, . . . ,

∂v

∂xN

)
,

∂kf(k)(u) is Clarke’s generalized gradient of f(k): R
N →R with respect to the

variable uk, and hk ∈V ∗
0 . The variable sk of f(k)(s1, . . . , sN) is called its prin-

cipal argument and the variables sj with j �= k are the nonprincipal argu-
ments of f(k). If s ∈R

N then we denote

[s]k := (s1, . . . , sk−1, sk+1, . . . , sN)∈R
N−1,

(τ, [s]k) := (s1, . . . , sk−1, τ, sk+1, . . . , sN)∈R
N.

Thus we may write, e.g., f(k)(s)=f(k)(sk, [s]k), that is, [s]k is the collection
of all nonprincipal arguments of f(k).

Boundary value problem (BVP for short) (46) may be considered as
the multivalued extension of an elliptic system with a vector field g =
(g(1), . . . , g(N)) whose component functions g(k)(s1, . . . , sN) may be discon-
tinuous with respect to sk. More precisely, if sk �→g(k)(sk, [s]k) is assumed to
be locally bounded, then under some measurability condition on g(k) and
assuming the existence of one-sided limits g(k)(sk ± 0, [s]k), it follows that
the function f(k) defined by

f(k)(s) :=
∫ sk

0
g(k)(τ, [s]k)dτ

satisfies

∂kf(k)(s)= [lim inf
t→sk

g(k)(t, [s]k), lim sup
t→sk

g(k)(t, [s]k)],

cf., e.g., [9]. Roughly speaking, the last equation means that the multi-
valued term ∂kf(k) is obtained by filling in the gaps at the discontinuous
points of sk �→g(k)(sk, [s]k). Since we only will assume that f(k)(s) is upper
semicontinuous with respect to its nonprincipal variables sj , j �=k, the the-
ory to be developed in this section will allow us to deal with discontinu-
ous elliptic systems, whose component functions g(k)(s), in addition, may
depend discontinuously also on the nonprincipal arguments.

The main goal of this section is to provide conditions for the vector field
f of the BVP (46) that allow the identification of regions of existence of
solutions for (46), so called trapping regions, which will be defined later.
While for smooth vector fields f this kind of trapping principle is well
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known (see, e.g., [4]), things become much more involved in case of discon-
tinuous vector fields. Semilinear discontinuous systems have been treated,
e.g., in [6, 11] under very restrictive monotonicity assumptions of the gov-
erning vector field. The main result of this section is a strong extention of
these papers.

5.1. notations and assumptions

We impose the following hypotheses of Leray–Lions type on the coefficient
functions a(k)i , i=1, . . . ,N , of the operators Ak.

(A1) Each a
(k)
i :� × R

N → R satisfies Carathéodory conditions, i.e.,
a
(k)
i (x, ξ) is measurable in x ∈� for all ξ ∈ R

N and continuous in
ξ for almost all x ∈�. There exist constants c(k)0 >0 and functions
κ
(k)

0 ∈Lq(�),1/p+1/q=1, such that

|a(k)i (x, ξ)|�κ(k)0 (x)+ c(k)0 |ξ |p−1,

for a.e. x ∈� and for all ξ ∈R
N .

(A2)
∑N

i=1(a
(k)
i (x, ξ)−ai(x, ξ ′))(ξi − ξ ′

i )>0
for a.e. x ∈�, and for all ξ, ξ ′ ∈R

N with ξ �= ξ ′.
(A3)

∑N
i=1 a

(k)
i (x, ξ)ξi �νk|ξ |p

for a.e. x ∈�, and for all ξ ∈R
N with some constants νk >0.

As a consequence of (A1) and (A2) the operators Ak :V →V ∗ defined by

〈Aku,ϕ〉 :=ak(u,ϕ)=
N∑
i=1

∫

�

a
(k)
i (x,∇u)

∂ϕ

∂xi
d�,

are continuous, bounded, and monotone, and hence, in particular, pseudo-
monotone. A partial ordering in Lp(�) is defined by u�w if and only if
w− u belongs to the positive cone Lp+(�) of all nonnegative elements of
Lp(�). This induces a corresponding partial ordering also in the subspace
V of Lp(�), and if u, w∈V with u�w then

[u,w]={z∈V |u� z�w}

denotes the order interval formed by u and w. If u, w∈Lp(�;R
N) then a

partial ordering is given by u�w if and only if uk�wk, for k∈{1, . . . ,N},
i.e., Lp(�;R

N) is equipped with the componentwise partial ordering, which
induces a corresponding partial ordering in the spaces X :=W 1,p(�;R

N)

and X0 :=W 1,p
0 (�;R

N).
We define the notion of weak solution of the BVP (46) as follows.
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DEFINITION 1. The function u = (u1, . . . , uN) ∈ X0 is called a solution
of the BVP (46) if there is a function χ ∈ Lq(�;R

N) such that for k ∈
{1, . . . ,N}

(i) χk(x)∈ ∂kf(k)(u(x)) for a.e. x ∈�,
(ii) 〈Akuk, ϕ〉+ ∫

�
χk(x)ϕ(x)d�=〈hk, ϕ〉, ∀ϕ ∈V0.

Let R= [u,u]⊂X be the rectangle formed by the ordered pair u, u∈X.
The following definition is a natural extension to systems of multivalued
elliptic equations of the well known notion of super- and subsolution for
scalar equations. Denote Au :=(A1u1, . . . ,ANuN) and ∂f (u) :=(∂1f1(u), . . . ,

∂NfN(u)), then the BVP (46) may be rewritten in the form:

u∈X0 : Au+ ∂f (u)�h in X∗
0, (47)

where h= (h1, . . . , hN)∈X∗
0.

DEFINITION 2. The vector Au + ∂f (u) is called a generalized outward
pointing vector on the boundary ∂R of the rectangle R if for all s ∈R the
following inequalities are satisfied:

〈Akuk + χ̄k, ϕ〉� 〈hk, ϕ〉, ∀ϕ ∈V0 ∩Lp+(�),
where χ̄k ∈Lq(�) and χ̄k(x)∈ ∂kf(k)(ūk(x), [s(x)]k), and

〈Akuk +χk, ϕ〉� 〈hk, ϕ〉, ∀ϕ ∈V0 ∩Lp+(�),
where χ

k
∈Lq(�) and χ

k
(x)∈ ∂kf(k)(uk(x), [s(x)]k).

Finally, we introduce the notion of the trapping region.

DEFINITION 3. The rectangle R, is called a trapping region of the BVP
(46) if Au+ ∂f (u) is a generalized outward pointing vector on the bound-
ary ∂R and if the vector functions u and u satisfy u�0�u on ∂�.

EXAMPLE. Consider the following 2×2 system

−�u1 + ∂1(−u1)
+ �g1(u2) in �, u1 =0 on ∂�,

−�u2 + ∂2(−u2)
+ �g2(u1) in �, u2 =0 on ∂�,

where w+ := max{w,0}, and gi : R → R are assumed to be bounded, i.e.,
|gi(s)|� di, i= 1,2, for all s ∈R with some nonnegative constants di . The
corresponding nonlinearities f(i) in this case are given by

f(1)(u1, u2)= (−u1)
+ −u1g1(u2)+ c1,

f(2)(u1, u2)= (−u2)
+ −u2g2(u1)+ c2,
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where ci are some additive constants. Let us define u= (u1, u2) as the vector
function whose components ui are given by the unique nonnegative solu-
tion of the following Dirichlet problem (i=1,2):

−�ui =di +1 in �, ui =0 on ∂�.

Similarly we define u= (u1, u2) as the vector function whose components
ui are given by the unique nonpositive solution of the following Dirichlet
problem (i=1,2):

−�ui =−di in �, ui =0 on ∂�.

Then one verifies that the rectangle R= [u,u] is a trapping region of this
system.

Let R⊂X be a trapping region of (46). We assume the following hypoth-
eses for the vector field f of (46):

(F1) For k∈{1, . . . ,N} and for all s ∈R
N

(i) [s]k �→ f(k)(sk, [s]k) is upper semicontinuous, uniformly with
respect to sk;

(ii) sk �→f(k)(sk, [s]k) is locally Lipschitz;

(F2) There exist constants αk >0, and ck >0 such that

η
(1)
k �η(2)k + ck

(
s
(2)
k − s(1)k

)p−1
(48)

with η(i)k ∈∂kf(k)
(
s
(i)
k , [s]k

)
, i=1,2, and for s(1)k , s

(2)
k satisfying uk(x)−

αk � s
(1)
k < s

(2)
k � ūk(x)+ αk, and for all [s]k satisfying [u(x)]k � [s]k �

[ū(x)]k.
(F3) There are functions �k ∈Lq+(�) such that

χk(x)∈ ∂kf(k)(sk(x), [s(x)]k) : |χk(x)|��k(x), x ∈� (49)

for all sk∈ [uk−αk, ūk+αk] and [s]k∈ [[u]k, [ū]k], where αk is as in (F2).

Remark 5. As will be seen from the proof of our main result the upper
semicontinuity imposed by (F1) is actually only required to hold with
respect to the region

[uk −αk, ūk +αk]× [[u]k, [ū]k]⊂Lp(�;R
N).

By hypothesis (F2) we impose locally a one-sided growth of ∂kf(k) with
respect to its principal argument, which is trivially satisfied if, e.g., f(k)
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is convex with respect to its principal argument. By hypothesis (F3) we
assume a local Lq-boundedness of Clarke’s gradient with respect to a
slightly enlarged rectangle Rα = [u−α, ū+α].

The main result of this section is the following existence and enclosure
result for the BVP (46).

THEOREM 6. Let R = [u, ū] be a trapping region, and let hypotheses
(A1)–(A3) and (H1)–(H3) be fulfilled. Then the BVP (46) has a solution
u∈X0 within R.

Remark 7. The result of Theorem 6 may be extended to more general
BVP, which include Leray–Lions operators Ak with coefficients a(k)i (x, u,∇u),
i.e., with coefficients that depend, in addition, on u. Moreover, the vector
field f may be of the form f = f (x, u), i.e., it may depend on the space
variable x as well. Only for simplifying our presentation and in order to
emphasize the main idea we have restricted to the BVP in the form (46).

In the proof of our main result the following truncation operators will
be used:

(Tkuk)(x)=

⎧⎪⎨
⎪⎩

ūk(x) if uk(x)> ūk(x),
uk(x) if uk(x)�uk(x)� ūk(x),
uk(x) if uk(x, t)<uk(x),

(50)

and with α>0 given in (F2) (ii) we define the truncation operator T αk by

(T αk uk)(x)=

⎧⎪⎨
⎪⎩

ūk(x)+αk if uk(x)> ūk(x)+αk,
uk(x) if uk(x)−αk �uk(x)� ūk(x)+αk,
uk(x)−αk if uk(x)<uk(x)−αk.

(51)

It is known that the truncation operators Tk, and T αk are continuous and
bounded from V into V (see, e.g., [5, Chap. C.4]). The related truncated
vector functions T u and T αu are given by T u = (T1u1, . . . , TNuN) and
T αu= (T α1 u1, . . . , T

α
NuN), respectively. Next we introduce cut-off functions

bk :�×R→R given by

bk(x, s)=

⎧⎪⎨
⎪⎩

(s− ūk(x))p−1 if s > ūk(x),
0 if uk(x)� s� ūk(x),
−(uk(x)− s)p−1 if s <uk(x).

(52)



630 S. CARL AND Z. NANIEWICZ

Let ck >0 be generic constants. One readily verifies that bk is a Carathéod-
ory function satisfying the growth condition

|bk(x, s)|��k(x)+ ck|s|p−1 (53)

for a.e. x ∈�, for all s ∈R, with some functions �k ∈Lq(�). Moreover, one
has the following estimate

∫

�

bk(x, uk(x))uk(x) d�� ck‖uk‖pLp(�)− ck, ∀uk ∈Lp(�). (54)

In view of (53) the Nemytskij operator Bk :Lp(�)→Lq(�) defined by

Bkuk(x)=bk(x, uk(x))

is continuous and bounded.

5.2. auxiliary truncated bvp

We consider first the following auxiliary truncated BVP: Find u =
(u1, . . . , uN)∈X0 such that

Akuk +λkbk(·, uk)+ ∂kf(k)(T αk uk, [T u]k)�hk, in V ∗
0 , (55)

where λk >0 are some constants to be specified later. If we define

b̃k(x, s)=
∫ s

0
bk(x, τ )dτ,

then the function f̃(k) defined by

f̃(k)(·, sk, [s]k) :=λkb̃k(·, sk)+f(k)(T αk sk, [T s]k) (56)

satisfies

∂kf̃(k)(·, sk, [s]k)=λkbk(·, sk)+ ∂kf(k)(T αk sk, [T s]k),

and problem (55) becomes

Akuk + ∂kf̃(k)(·, uk, [u]k)�hk, in V ∗
0 . (57)

Due to the continuity and boundedness of the operators T αk , Tk, and
Bk, and in view of hypotheses (F1), (F3) one can see that f̃(k) fulfill
the assumptions (H3)–(H5) of Section 1. Moreover, assumptions (A1)–
(A3) imposed on Ak imply that the operator A:X0 → X∗

0 defined by
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Au= (A1u1, . . . ,AnuN) satisfies also assumptions (H1) and (H2) of Section 1.
Therefore we can apply Theorem 4 of Section 4 to the BVP (57) which
yields the existence of (u, χ̃)∈X0 ×L1(�;R

N) such that

〈Au,v−u〉+
∫

�

χ̃ · (v−u)d�=〈h, v−u〉, ∀v∈X0 ∩L∞(�;R
N), (58)

where χ̃k(x)∈∂kf̃(k)(u(x)). for a.e. x∈�, and χ̃kuk ∈L1(�). By definition of
f̃(k) we get

χ̃k −λkbk(·, uk)∈ ∂kf(k)(T αk uk, [T u]k), (59)

which by (F3) implies that

|χ̃k(x)−λkbk(x, uk(x))|��k(x),

and hence it follows that χ̃k ∈Lq(�), because bk(·, uk)∈Lq(�). Since χ̃ ∈
Lq(�;R

N), it follows that (58) is true for any v ∈X0, which shows that
(u, χ̃)∈X0 ×Lq(�;R

N) satisfies

〈Au,v〉+
∫

�

χ̃ ·v d�=〈h, v〉,

or equivalently

Akuk +λkbk(·, uk)+χk =hk, in V ∗
0 , (60)

where χk= χ̃k−λkbk(·, uk)∈Lq(�), and χk(x)∈∂kf(k)(T αk uk(x), [T u(x)]k) a.e.
in �. Thus we have proved the following result.

LEMMA 8. The auxiliary BVP (55) possesses a solution (u,χ) ∈ X0 ×
Lq(�;R

N) in the sense of Definition 1.

We remark that in proving the existence for the auxiliary problem (55),
actually an additional regularization technique similar as in [8] has to be
applied to compensate the lack of a chain rule of Clarke’s gradient with the
truncation function. We have dropped this regularization technique here in
order to avoid too much technicalities.

5.3. proof of theorem 6

Proof. Theorem 6 is proved provided we are able to show that any solu-
tion u of the auxiliary BVP (55) is enclosed by the trapping region, i.e., u∈
R= [u, ū]. This is because if u∈R then bk(·, uk)=0, and f(k)(T αk uk, [T u]k)=
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f(k)(u), and thus u is a solution of the original BVP (46), which belongs to
R. Now let u be a solution of the BVP (55). We are going to prove u� ū.

By definition of the trapping region (ū, χ̄)∈X×Lp(�;R
N) satisfies: ū�0

on ∂� and for all ϕ ∈V0 ∩Lp+(�)

Akūk + χ̄k �hk, in V ∗
0 , with χ̄k ∈ ∂kf(k)(ūk, [s]k) (61)

for any s ∈ R. Thus (61) holds, in particular, for s= T u∈ R with u being
the solution of (60). Subtracting (61) from (60) we obtain for any ϕ∈V0 ∩
L
p
+(�) the inequality

〈Akuk −Akūk, ϕ〉+λk
∫

�

bk(·, uk)ϕd�+
∫

�

(χk − χ̄k)ϕd��0. (62)

Taking in (62) the special test function ϕ=max{uk − ūk,0}=: (uk − ūk)+ we
get

N∑
i=1

∫

{uk>ūk}
(ai(·,∇uk)−ai(·,∇ūk)) ∂(uk − ūk)

∂xi
d�

+λk
∫

{uk>ūk}
bk(·, uk)(uk − ūk)d�

+
∫

{uk>ūk}
(χk − χ̄k)(uk − ūk)d��0 (63)

with χ̄k ∈ ∂kf(k)(ūk, [T u]k), and χk ∈ ∂kf(k)(T αk uk, [T u]k), where {uk > ūk} :=
{x ∈�|uk(x) > ūk(x)}. If uk(x) > ūk(x) then T αk uk(x) > ūk(x), and thus in
view of (F2) it follows

χ̄k(x)�χk(x)+ ck
(
T αk uk(x)− ūk(x)

)p−1
. (64)

Fox x ∈{uk > ūk} we have uk(x)�T αk uk(x), and so from (64) we obtain

χk(x)− χ̄k(x)�−ck(uk(x)− ūk(x))p−1. (65)

By definition of the cut-off function bk we get for the second term on the
left-hand side of (63)

λk

∫

{uk>ūk}
bk(·, uk)(uk − ūk)d�=λk

∫

{uk>ūk}
(uk(x)− ūk(x))pd�. (66)
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By hypothesis (A2) the first term on the left-hand side of (63) is nonnega-
tive. Thus in view of (65) and (66) from (63) we infer

(λk − ck)
∫

{uk>ūk}
(uk(x)− ūk(x))pd�

= (λk − ck)
∫

�

(
(uk(x)− ūk(x))+

)p
d��0, (67)

which holds true for any λk >0. Selecting the parameter λk such that λk >
ck, from (67) it follows that (uk − ūk)+ =0, which implies uk � ūk a.e. in �.
In a similar way one can show the inequality uk �uk, which completes the
proof of Theorem 6.

Remark 9. Recently in [7] the existence of solutions within a trapping
region of a 2×2 discontinuous quasilinear elliptic system has been proved
under the hypothesis that the vector field is of mixed monotone type. One
of the main tools used in the proof of [7] was a fixed point theorem for
increasing (not necessarily continuous) mappings in ordered spaces. Since
Theorem 6 of this section does not require any monotonicity of the vector
field f , it provides a generalization of the result of [7].

References

1. Aubin, J.P. and I. Ekeland (1984), Applied Nonlinear Analysis. John Wiley & Sons.
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5. Carl, S. and Heikkilä, S. (2000), Nonlinear Differential Equations in Ordered Spaces,
CRC Press.
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